# **ROTABLOC® RBT**











SERIES

400-2000 kVA

DYNAMIC UPS











#### **HIGHLIGHTS**

- Total Power Failure Protection
- Outstanding Voltage Conditioning
- Unrivaled Lowest Total Cost of Ownership
- Electrical Coupling with **Existing or New Genset**

# Robust Rotary Technology

- The RBT system consists of a standard synchronous generator with no special windings and a simple steel flywheel. The low speed shaft extends bearing life and reduces maintenance.
- The ROTABLOC® machine is very robust as critical functions do not use fragile components such as power electronics, power capacitors, electro-chemical batteries, active magnetic bearings, electro-mechanical or mechanical friction clutches.

**CERTIFICATES** 











400-2000 kVA

DYNAMIC UPS

## Standard Features

- Input / Output Power Measurement
- Fully Automatic Operation
- Voltage-free Interface Signals
- Automatic By-pass

## **Options**

- Automatic Lubrication System
- Plug & Run Parallel Working
- Supervision Software
- Containerized Solution
- Bearing Monitoring
- Customized Switchgear (Form 4, NEMA)
- Soundproof Enclosure
- Tropical Conditions

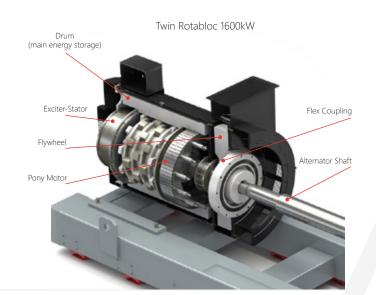
# Green Technology

Our highly efficient UPS supports your aims to minimize your environmental impact and mitigate the efects of rising energy costs in the future. Our ROTABLOC® design, almost all steel and copper, ensures that it is over 99.97% recyclable.

- No batteries no need for expensive replacement cycle / no costly disposal of hazardous materials.
- No air conditioning required providing a/c for battery rooms is a significant cost and impacts the environment.
- Dynamic Autonomy Control (DAC): Automatic speed adaptation for optimum eciency at partial load with FULL critical load protection.
- 91% of all voltage interruptions last less than 1 second (European urban locations) the RBT protects the load without generator starts\*.

| TYPE              | POWER | POWER |      |  |  |
|-------------------|-------|-------|------|--|--|
| 50 Hz or 60 Hz    |       | kVA   | kW   |  |  |
| RBT-400           | 50/60 | 400   | 320  |  |  |
| RBT-500           | 50/60 | 500   | 400  |  |  |
| RBT-500 HP (PF:1) | 50/60 | 500   | 500  |  |  |
| RBT-630           | 50/60 | 630   | 504  |  |  |
| RBT-800           | 50/60 | 800   | 640  |  |  |
| RBT-1000          | 50/60 | 1000  | 800  |  |  |
| RBT-1250 TW       | 50/60 | 1250  | 1000 |  |  |
| RBT-1600 TW       | 50/60 | 1600  | 1280 |  |  |
| RBT-1750 TW       | 50/60 | 1750  | 1400 |  |  |
| RBT-2000 TW       | 50/60 | 2000  | 1600 |  |  |

# **Normal Operation**


• In normal operation the RBT protects the electrical load from power quality problems eliminating harmonics, flicker, voltage spikes and sags. This power quality protection prevents wear on your facilities infrastructure – including damage to motors and pumps, and reduces the maintenance downtime necessary to repair or replace such assets. These issues can be over 95% of power problems faced by your facility each year.

#### Mains Failure

- During mains failure the RBT protects the load and maintains the power supply at the precise voltage and frequency by supplying energy to the alternator from the Accumulator without need for electronic power conversion.
- Whilst these 'blackout' events are fewer in number, for organizations where power is always required during operation, interruption of mains electricity leading to loss of production (including restart time), wastage of part processed materials and a dented reputation could be very costly.

#### **Extended Mains Failure**

 Under extended mains failure, the load is automatically transferred to your chosen back-up energy source, usually a diesel genset. Once a stable mains supply returns the RBT will safely transfer the load back and be ready to act again.



<sup>\*</sup>This is configurable to maximize RBT power output or compensate for short interruptions.



400-2000 kVA

DYNAMIC UPS

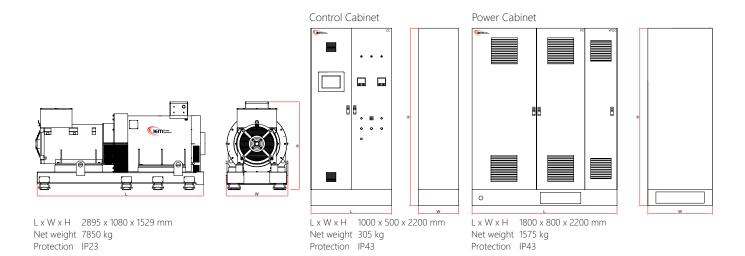
# Simply Reliable Solutions to Power Quality Issues

Data Centres, Banking, Telecommunications, Airports, Healthcare, Industrial, Manufacturing, Government, Defense, Water, Treatment, Alternative Energy, Stadiums, Research, in fact all installations where continuous running is required, demand a filtered, continuous and sustainable power supply solution.

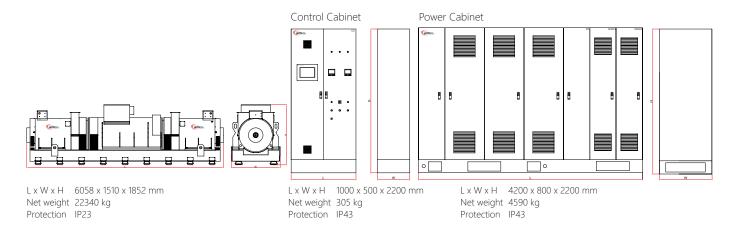
| Features                                          | Benefits                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Outstanding voltage conditioning                  | <ul> <li>Protects equipment against mains voltage fluctuations, sags and microcut</li> <li>Naturally compensates power factor without need for PFC equipment</li> <li>Filters load harmonics and voltage harmonics from mains</li> <li>Eliminates flicker</li> </ul>                                       |  |  |  |  |
| Total power failure protection                    | <ul> <li>Sustainable continuous power supply</li> <li>Ride-through mode covers 90% of mains failures without genset start</li> <li>Flexible DRUPS solution when configured with standard genset</li> </ul>                                                                                                 |  |  |  |  |
| Robust rotary technology                          | <ul><li>Conventional electrical / mechanical machine</li><li>High reliability</li><li>Low cost maintenance</li></ul>                                                                                                                                                                                       |  |  |  |  |
| High efficiency                                   | <ul><li>Energy saving</li><li>Unrivaled low Total Cost of Ownership (TCO)</li><li>Green technology</li></ul>                                                                                                                                                                                               |  |  |  |  |
| High short-circuit power                          | <ul> <li>Fast fault-clearing capacity ensuring protections selectivity</li> <li>Suitable for high peak currents (motors and mechanical loads)</li> <li>Suitable for high crest factors (non-linear loads)</li> </ul>                                                                                       |  |  |  |  |
| Modular and resilient<br>"Plug & Run" paralleling | <ul> <li>Flexibility from day one</li> <li>Scalability for future extension</li> <li>High resilience thanks to full redundancy without single point of failure</li> <li>Ideal for Tier III / Tier IV applications (Uptime Institute)</li> </ul>                                                            |  |  |  |  |
| Easy interfacing                                  | <ul> <li>User-friendly digital display (HMI)</li> <li>Basic interface via simple contacts</li> <li>Powerful communication features:</li> <li>SCADA / BMS interface via MODBUS RTU/TCP</li> <li>Internet access</li> <li>PC supervision</li> <li>Remote monitoring, alarming and paging features</li> </ul> |  |  |  |  |
| Low maintenance                                   | <ul> <li>Simple maintenance operations</li> <li>Unaffected up-time: no need to stop UPS during maintenance</li> <li>Automatic Lubrication System for maximum reliability and lowest TCO</li> </ul>                                                                                                         |  |  |  |  |

## Medium Voltage

- Recognition of the advantages of Medium Voltage (MV) systems in facilities with high power requirements is growing.
  The benefits include: ease of power distribution, lower TCO, improved safety, reduced maintenance / greater reliability, enhanced flexibility in current and future power infrastructure and improved green credentials with lower embodied energy and lower energy usage.
- Makelsan can provide DRUPS systems that will support MV in your facility, delivering high quality, continuous MV power to your operation.
   We are experts in Medium Voltage and can utilize Vesta-AR arc-resistant metal-clad switchgear, is the leading MV solution for distributing power safely and eciently throughout your building.







DYNAMIC UPS

#### **DETAILS**

## ROTABLOC® RBT SERIES 400 kVA



## ROTABLOC® RBT SERIES 2000 kVA



| Performances and Characterisitics            |                            |         |           |         |         |          |            |            |            |            |  |
|----------------------------------------------|----------------------------|---------|-----------|---------|---------|----------|------------|------------|------------|------------|--|
| MODEL                                        | RBT-400                    | RBT-500 | RBT-500HP | RBT-630 | RBT-800 | RBT-1000 | RBT-1250TW | RBT-1600TW | RBT-1750TW | RBT-2000TW |  |
| Voltage                                      | 3 x 400 / 480 V            |         |           |         |         |          |            |            |            |            |  |
| Frequency                                    | 50 / 60 Hz                 |         |           |         |         |          |            |            |            |            |  |
| Nominal Phase Current                        | 577 A                      | 722 A   | 722 A     | 909 A   | 1155 A  | 1443 A   | 1804 A     | 2309 A     | 2526 A     | 2887 A     |  |
| Protection by Upstream Breaker               | 630 A                      | 800 A   | 1000 A    | 1000 A  | 1250 A  | 1600 A   | 2000 A     | 2500 A     | 3200 A     | 3200 A     |  |
| Nominal Apparent Power                       | 400 kVA                    | 500 kVA | 500 kVA   | 630 kVA | 800 kVA | 1000 kVA | 1250 kVA   | 1600 kVA   | 1750 kVA   | 2000 kVA   |  |
| Nominal Active Power                         | 320 kW                     | 400 kW  | 500 kW    | 504 kW  | 640 kW  | 800 kW   | 1000 kW    | 1280 kW    | 1400 kW    | 1600 kW    |  |
| Nominal cos                                  | 0.9 Leading to 0.8 Lagging |         |           |         |         |          |            |            |            |            |  |
| Efficiency at Nominal Load                   | 95.3%                      | 95.8%   | 96.5%     | 95.5%   | 96.4%   | 96.8%    | 95.5%      | 96%        | 95.5%      | 96%        |  |
| Autonomy (Adjustable)                        | 12s 11.3s                  |         |           |         | 11.3s   | 10s      | 12s        | 11.3s      | 11.4s      | 10s        |  |
| Maximum Energy Storage                       | 7.2 MJ                     |         |           |         |         | 8.0 MJ   | 14.4 MJ    | 14.4 MJ    | 16         | MJ         |  |
| Ambient Temperature                          | 0-40°C / 32-104°C          |         |           |         |         |          |            |            |            |            |  |
| Max Power Dissipation for Ventilation Design | 25 kW                      | 30 kW   | 30 kW     | 35 kW   | 40 kW   | 50 kW    | 70 kW      | 80 kW      | 90 kW      | 100 kW     |  |
| Altitude (Without de-rating)                 | ≤1000 m / 3280 ft          |         |           |         |         |          |            |            |            |            |  |
| Humidity                                     | ≤90%                       |         |           |         |         |          |            |            |            |            |  |